Rubin Observatory

Vera C. Rubin Observatory
Data Management

Schema Management in DM

William O’Mullane, Colin Slater
DMTN-153

Latest Revision: 2020-08-24



Schema Management in DM DMTN-153 Latest Revision 2020-08-24

Observatory

Abstract

This note attempts to describe what we mean be schema management, what we
would like and how it is currently implemented within DM.




Schema Management in DM DMTN-153 Latest Revision 2020-08-24

Observatory

Change Record

Version | Date Description Owner name
1 YYYY-MM- Unreleased. William O’'Mullane
DD

Document source location: https://github.com/1lsst-dm/dmtn-153



https://github.com/lsst-dm/dmtn-153

Schema Management in DM DMTN-153 Latest Revision 2020-08-24

Observator

Contents

N1 Types of Schemas 1
2 Management of Schemas 2
B Schema File Format 2
4 Science Pipelines 3
A References 4
4




Schema Management in DM DMTN-153 Latest Revision 2020-08-24

Observatory

Schema Management in DM

1 Types of Schemas

Abstract schema — DPDD (LSE-163). This describes the scientific content of the tables at a
level of detail that the future-user can understand what types of measurements will be pro-
duced, without necessarily specifying the exact format of the resulting data. The line between
these two levels of detail is inherently blurry; users look to the DPDD to evaluate if project
plans are sufficient for their science, but the level of detail required for that evaluation some-
times requires describing implementation choices that may change.

The abstract schema cannot by itself be realized in a concrete table; it lacks the full comple-
ment of columns, data type information, and unique column names, and thus requires further
elaboration.

“Specification” schemas — LDM-153. This is a schema that can be physically realized, and
it is designed to fulfill the needs of the DPDD's abstract schema. This schema is necessary
both for sizing purposes, and as a “goal” that the pipelines teams can work to as they build
and evolve the pipeline output files. The result of the construction project should be for the
pipelines to produce data that fully realize this schema.

Because changes to the “specification” schema potentially have impacts on multiple areas of
DM (e.g. storage costs or science impacts), it is change-controlled at the DM-CCB level.

“Concrete” schemas — e.g. HSC reprocessing schemas. These schemas are physically re-
alized; they are meant to describe data products that currently exist. These schemas must
accurately reflect those data products, regardless of what is specified in the DPDD or LDM-
153. They are not subject to change control since there is no project management impact
that can be caused by any changes. Inaccuracies may cause different dependent services to
break, but this is generally comparable in consequence to any other code breakage.




Schema Management in DM DMTN-153 Latest Revision 2020-08-24

Observatory

2 Management of Schemas

The DPDD is a project-level change-controlled document; procedures for modifying it are out-
side the scope of this document.

The “specification” schema in LDM-153 should be updated whenever necessary to reflect any
changes in DM's planned data products at the end of construction. Evolution of the LDM-
153 schema is expected during construction as the pipelines evolve and the measurement
outputs are better understood.

LDM-153 is change-controlled by the DM-CCB, and its contents are generated from the base-
lineSchema.yaml file in the sdm_schemas repository. Procedurally, baselineSchema.yaml should
be treated like any other LaTeX input for a change controlled document: changes to it may
be merged to master via a normal ticket, but are not “official” until an approved RFC releases
a new version of the LDM document.

The hsc.yaml schema in sdm_schemas is a “concrete” schema that is not subject to change con-
trol, but the ci_hsc integration tests verify that the outputs from that pipeline execution com-
ply with the schema specified in hsc.yaml. This ensures that an up-to-date schema is always
available, so that steps like loading an HSC reprocessing run into gserv do not require fixing
up all the changes to the schema since the previous ingest.

All other schemas in the sdm_schemas repository are “concrete” schemas reflecting specific sets
of data products; these may be edited as necessary by a normal ticket workflow.

TODO: we only have one hsc.yaml, should we be creating more reprocessing-specific copies?
l.e. one for each RC2 reprocessing and saving them in separate files in sdm_schemas.

3 Schema File Format

The “concrete” schema information needs to be available to a variety of different tools, each
with slightly different needs. Because of this, it was not sufficient to adopt a format like SQL
CREATE TABLE statements that were only suited to one particular use, and difficult to parse
for all other uses. Instead, the schemas in the sdm_schemas repository are in a yaml| format
defined by the Felis tool. The ease of parsing yaml makes it possible for many different tools




Schema Management in DM DMTN-153 Latest Revision 2020-08-24

Observatory

to all share the same source of schema information, minimizing intermediate stages.

The current uses of the Felis-defined yaml files are:

1. Qserv ingest — The Felis files are used as inputs to the ingest process.

2. TAP_SCHEMA creation — The Felis tool itself is designed to generate SQL statements
that populate the schema database used by the TAP standard.

3. LDM-153 generation — The tables in the document generated from the Yaml files.

4. Pipeline data product verification — Continuous integration tests verify that the pipeline
outputs comply with the physical schema in hsc.yaml.

Most of these uses depend on the YAML schema files without relying on the Felis tool itself.
This is generally a consequence of the YAML format being easy to parse by other tools.

4 Science Pipelines

Data products that are generated by the science pipelines must conform to a physical Felis-
defined schema in order to be loaded into databases. The pipelines generate a variety of
intermediate catalog products, often in afwTable FITS files, which must be transformed into
the user-facing tables by the pipelines team. This transformation is more than naming and
units: e.g. fluxes may need to have calibrations applied, or uncertainties in pixel units may be
transformed to angular units by using WCS information.

This transformation process is not change controlled; the pipelines team has full control over
how the user-facing tables are generated. It is only the definition of the user-facing tables
that is change-controlled.

The pipelines code implements the various column transformations via a series of “functors”,
each dedicated to a particular type of transformation, and the definition of which functors are
applied to which columns is defined by a YAML configuration file. This YAML file has an entirely
distinct format from the Felis-defined schemas, and its purpose is distinct. The pipelines code
generates data products that comply with a particular Felis schema, but there is no automatic
linkage between the two. Simple verification can be performed on the pipelines’ YAML file to




Schema Management in DM DMTN-153 Latest Revision 2020-08-24

Observatory

ensure that it generates columns with the correct names, but any changes to the output data
products require both the Felis YAML and the pipelines’ YAML to have corresponding updates

applied.

A References

B Acronyms

Acronym Description

CCB Change Control Board

DM Data Management

DMTN DM Technical Note

DPDD Data Product Definition Document

FITS Flexible Image Transport System

HSC Hyper Suprime-Cam

LDM LSST Data Management (Document Handle)

LSE LSST Systems Engineering (Document Handle)

LaTeX (Leslie) Lamport TeX (document markup language and document prepara-
tion system)

RFC Request For Comment

SQL Structured Query Language

TAP Table Access Protocol

WCS World Coordinate System

YAML Yet Another Markup Language




	Types of Schemas
	Management of Schemas
	Schema File Format
	Science Pipelines
	References
	Acronyms

